

Busbar Supports Type UBS

Low Voltage Switchboard Equipment

Contents

Descriptive

Use			 	1
Ordering	Informatio	on	 	1
Weights.			 	1
Technica	al			
Material	Details		 	2
Current F	Ratings (Sho	ort-Circuit)	 	3
Dielectric	Ratings		 	3
Support S	Spacings		 	4
Current F	Ratings (Cor	ntinuous)	 	4
nstallat	ion		 5	5-6
Dimensi	ons		 7	7-8

Descriptive

Use

These are designed primarily for the support of vertical busbars in motor control centres and switchboards.

Supports are made for 6.35mm and 10mm thick busbars. They complement all composite plug-in switch-fuse units, moulded case circuit breakers and separate busplugs having contacts at 60mm phase centres.

Ordering Information

Poles	Busbar Thickness (mm)	Cat. No.
3	6.35	UBS3 (6mm)
3	10	UBS3 (10mm)
3	13	UBS3 (13mm)
4	6.35	UBS4 (6mm)
4	10	UBS4 (10mm)
4	13	UBS4 (13mm)

- Each pair of supports is supplied with 2 inserts (for 3 poles) and 3 inserts (for 4 poles) as standard.
- If these are not requested, or if both supports require the inserts, please state at time of ordering. (Refer to Page 5 for details)
- Non-standard width of slots may be made to special order
- 10mm slots will accommodate KENTAN sleeving for 6.35mm busbars
- 13mm slots will accommodate KENTAN sleeving for 10mm busbars

Weights

	Weight Per Pair (grams)				
Poles	6mm	10mm	13mm		
3	322	304	292		
4	457	437	422		

Weight includes inserts for one support.

Technical

Material Details

The UBS supports are injection moulded from PA66 (Nylon type 6.6) with 50% glass fibre reinforcement. This is a compound specially selected to provide the highest flame retardancy (including glow-wire test at 960°C) with maximum mechanical strength. Colour is black.

				Value			
Property		Standard	Unit	DAM*	Cond**		
Physical Properties							
Density		ISO 1183	Kg/m³	1610			
Mechanical Properties							
Tensile Modulus	1mm/min	ISO 527-2/1A	MPa	17300			
Stress at Break	5mm/min	ISO 527-2/1A	MPa	210			
Strain at Break	5mm/min	ISO 527-2/1A	%	2.5			
Flexural Modulus	2mm/min	ISO 178	MPa	16200			
Flexural Strength	+23°C	ISO 179/1 eU	KJ/m2	85			
Charpy Notched Impact Strength	+23°C	ISO 179/1 eA	KJ/m2	14			
Thermal Properties		1			1		
Melting Temperature	10°C/min	ISO 11357-1-3	°C	260			
Heat Deflection Temperature	1.8MPa	ISO 75/2 A f	°C	250			
Flammability Properties							
Flammability	0.8mm	UL 94	Class	V0			
Glow Wire Flammability Index	1mm / 2mm	IEC 60695-2-1/2	°C/mm	960 / 960			
Glow Wire Ignition Temperature	1mm / 2mm	IEC 60695-2-1/3	°C/mm	750/775			
Electrical Properties							
Volume resistivity	500V	IEC 60093	ohm · m	1 E+13	1 E+11		
Surface resistivity	500V	IEC 60093	ohm	1 E+12	1 E+10		
Comparative Tracking Index	Sol.A	IEC 60112	V	500			

^{*} DAM = Dry As Moulded state

^{**} Cond = Conditional state similar to ISO 1110

^{***} Melt Temp {°C] / Mold Temp [°C] / Cavity press (MPa]

Technical

Current Ratings (Short-Circuit)

The duration of the fault, limited by the protective device (approximately 6 cycles) is too short to allow the heat to dissipate from the bars, and will therefore be absorbed by the bars.

A maximum short-time temperature of up to 190°C is taken as a safe temperature for copper and aluminium.

The temperature rise of the busbars as a result of a short-circuit must be taken into account in the design of the busbar arrangement. In some cases, this may be the determining factor, rather than the continuous current rating.

The chart below shows the minimum cross-sectional areas for copper and aluminium for various fault ratings. These show temperature rise from 0° C, and a short-circuit occurring at the maximum continuous rating. This is 90° C for aluminium and 105° C for copper. (Some specifications limit the operating temperature of copper to less than 105° C). It can be seen that the final temperature is not the sum of the temperature rise and the operating temperature. This is an exponential factor due to the ever increasing resistance due to temperature.

Temp Rise

	Base	Minimum Cross-Sectional Areas (mm²) Short-Circuit (kA) 1 Sec				
	Temp	40	50	65	80	
Copper	0°C	205	260	335	415	
	90°C	360	450	585	720	
Aluminium	0°C	322	400	525	645	
	90°C	525	655	850	1050	

Dielectric Ratings

Rated Voltage 1000V
 Rated Impulse Voltage: Uimp 12kV
 Clearance Distance 15.5mm
 Creepage Distance 15.5mm

- Standard AS/NZS 61439.1:2016
- Pollution degree 3
- Material group II
- Material is 400 > 400 CTI < 600

Technical

Support Spacings (for Copper & Aluminium Bars)

Busbar Size	Fault Ipk Current	66	105	143	176
(mm)	kA Irms	30	50	65	80
31 x 6.35		500			
40 x 6.35		600			
50 x 6.35		650	240		
63 x 6.35		700	250	200	
80 x 6.35		750	260	210	140
100 x 6.35		800	280	260	150
125 x 6.35		800	300	300	150
40 x 10		550	320	230	
50 x 10		600	340	240	
60 x 10		700	360	250	130
80 x 10		800	380	260	140
100 x 10		800	400	280	150
120 x 10		800	400	290	150

- Tests have been carried out on a typical switchboard enclosure to comply with the intention of clause 10.11.5.1 (test arrangements)
- Test voltage 415V 50Hz
- Duration 1 second
- Tests in accordance with AS/NZS 61439.1:2016 Clause 10.11.5.3.3
- Test reports available for distances shown in bold letters
- Tests conducted at TUV Rheinland in Melbourne, Australia
- Refer to Temp Rise chart on Page 3 for minimum size bars for a given fault rating

Current Ratings (Continuous)

In addition to the size and material of the busbars, the continuous current (thermal) ratings of busbars are dependent upon a number of factors. These are determined by the switchboard builder, and is therefore not part of the scope of this brochure. These are:

- Ambient temperature
- Limit of final temperature
- Ratio between cross-section area of bars and enclosure or compartment
- Material of the enclosure (e.g. ferrous or non-ferrous)

Installation

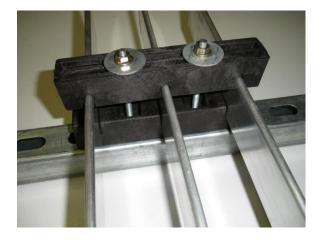
The UBS supports have a hollow section (pocket) into which an insert with a recess for an M6 nut can be fitted. In keeping with the supports that were previously moulded with a hollow section and hex recess per pair, the hollow type may be referred to as Type A, and when fitted with the inserts as Type B. This arrangement provides flexibility in the means by which the supports may be used.

Unless otherwise specified, supports will be supplied with the inserts to make up one Type B per pair.

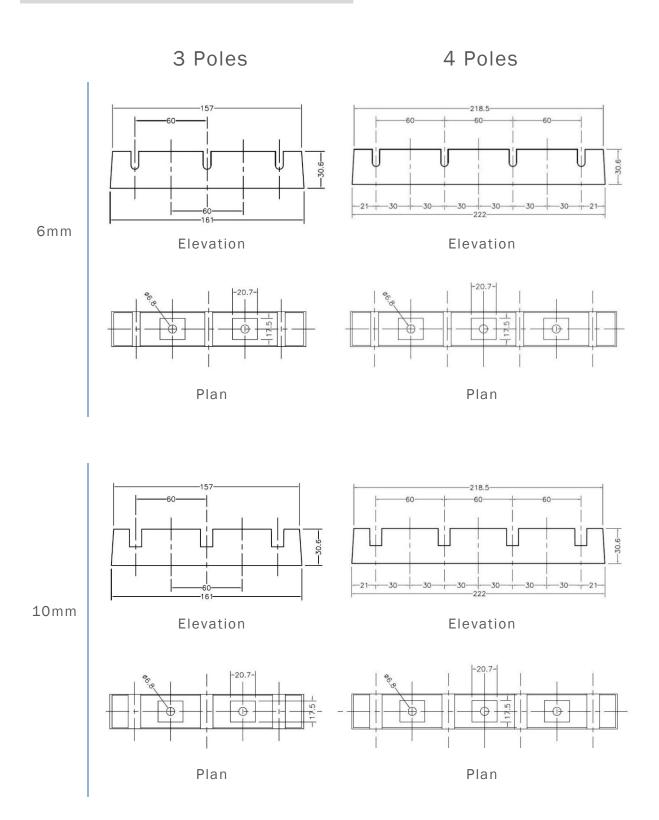
Picture shows an insert being fitted into a pocket to make up a Type B support

Installation

M6 bolts or the threaded rod of 4.6 grade (min) can be used.


For busbars 125 and 160mm wide, the holes in the supports should be 8.5mm (drilled out by the installer), and M8 hardware fitted. Tightening torques: M6 - 8 Nm, M8 - 10 Nm

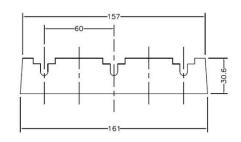
M6 bolts (or nuts) using inserts



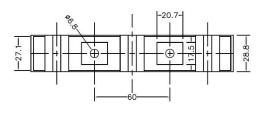
M6 bolts (or nuts) inside of pocket

M6 bolts using large washers

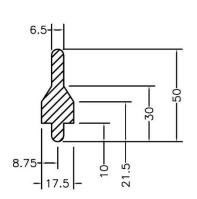
Dimensions



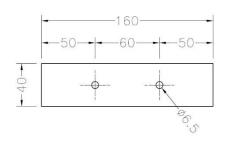
Dimensions

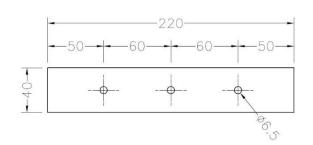

3 Poles for Special Profile Bars

Available to order (min run quantities apply)


3 Poles

Elevation


Plan


Insulation Plates

Not required for 10000. Used when required creepage distance to earth is 25mm. Made from 2mm clear polycarbonate sheet.

3 Poles

4 Poles

KENTAN ENGINEERING

A.B.N. 21 009 217 654

Units 1-4, 8 Carole Road (Main Office Unit 3) MADDINGTON, Western Australia 6109

PO Box 284 MADDINGTON, Western Australia 6989

International Telephone: +61 8 9493 5255

National Telephone: (08) 9493 5255

Email: sales@kentan.com.au Internet: www.kentan.com.au

